Электронное пособие
Геометрия 10-11 класс
Ванкеева В.А.
Компланарные векторы
Ранее мы ввели понятие вектора в пространстве, понятие равных векторов, правила сложения и вычитания векторов, а также произведение вектора на число.
И все теоретические аспекты векторов в пространства практически совпадают с теорией векторов на плоскости. За исключением правила многоугольника сложения нескольких векторов. Многоугольник сложения в пространстве может быть и пространственным, то есть не все его вершины лежат в одной плоскости.
Сегодня мы с вами познакомимся с существенным и одним из главных отличий векторов на плоскости и векторов в пространстве. Мы введём понятие компланарных векторов.
Определение. Векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости.
Но в связи с тем, что от любой точки пространства можно отложить вектор равный данному, и притом только один, можно это определение переформулировать так.
Векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости.
Понятно, что любые два вектора всегда будут компланарными, ведь через них можно провести прямые, а через две прямые всегда можно провести единственную плоскость.